Lateral mobility of membrane-binding proteins in living cells measured by total internal reflection fluorescence correlation spectroscopy.

نویسندگان

  • Yu Ohsugi
  • Kenta Saito
  • Mamoru Tamura
  • Masataka Kinjo
چکیده

Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) allows us to measure diffusion constants and the number of fluorescent molecules in a small area of an evanescent field generated on the objective of a microscope. The application of TIR-FCS makes possible the characterization of reversible association and dissociation rates between fluorescent ligands and their receptors in supported phospholipid bilayers. Here, for the first time, we extend TIR-FCS to a cellular application for measuring the lateral diffusion of a membrane-binding fluorescent protein, farnesylated EGFP, on the plasma membranes of cultured HeLa and COS7 cells. We detected two kinds of diffusional motion-fast three-dimensional diffusion (D(1)) and much slower two-dimensional diffusion (D(2)), simultaneously. Conventional FCS and single-molecule tracking confirmed that D(1) was free diffusion of farnesylated EGFP close to the plasma membrane in cytosol and D(2) was lateral diffusion in the plasma membrane. These results suggest that TIR-FCS is a powerful technique to monitor movement of membrane-localized molecules and membrane dynamics in living cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Thin Layer Imaging with the Total Internal Reflection Fluorescence Microscopy

Total internal reflection fluorescence microscopy (TIRFM) is an optical technique that allows imaging of a thin layer of the sample with a thickness of about 100-200 nm. It is used in science of cell biology to study cellular processes, especially near the membranes of living cells. This method is based on the total internal reflection phenomenon, where the evanescent wave is generated in the l...

متن کامل

Distribution, lateral mobility and function of membrane proteins incorporated into giant unilamellar vesicles.

GUVs have been widely used for studies on lipid mobility, membrane dynamics and lipid domain (raft) formation, using single molecule techniques like fluorescence correlation spectroscopy. Reports on membrane protein dynamics in these types of model membranes are by far less advanced due to the difficulty of incorporating proteins into GUVs in a functional state. We have used sucrose to prevent ...

متن کامل

Dual-color total internal reflection fluorescence cross-correlation spectroscopy.

We present the development and first application of a novel dual-color total internal reflection (TIR) fluorescence system for single-molecule coincidence analysis and fluorescence cross-correlation spectroscopy (FCCS). As a performance analysis, we measured a synthetic DNA-binding assay, demonstrating this dual-color TIR-FCCS approach to be a suitable method for measuring coincidence assays su...

متن کامل

Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy.

Over the past 10 years, advances in laser and detector technologies have enabled single fluorophores to be visualized in aqueous solution. Here, we describe methods based on total internal reflection fluorescence microscopy (TIRFM) that we have developed to study the behavior of individual protein molecules within living mammalian cells. We have used cultured myoblasts that were transiently tra...

متن کامل

Total internal reflection fluorescence.

Total internal reflection fluorescence (TIRF) is an optical effect particularly well-suited to the study of molecular and cellular phenomena at liquid/solid interfaces. Such interfaces are central to a wide range of biochemical and biophysical processes: binding to and triggering of cells by hormones, neurotransmitters, and antigens; blood coagulation at foreign surfaces; electron transport in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 91 9  شماره 

صفحات  -

تاریخ انتشار 2006